Part Number Hot Search : 
F315K6 SI230 MX7572S TC143E BLV2046 MRF245 TLYU160 U2535B
Product Description
Full Text Search
 

To Download MRF8P20160H Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  MRF8P20160Hr3 MRF8P20160Hsr3 1 rf device data freescale semiconductor rf power field effect transistors n--channel enhancement--mode lateral mosfets designed for cdma base station applications with frequencies from 1880 to 2025 mhz. can be used in class ab and class c for all typical cellular base station modulation formats. ? typical doherty single--carrier w--cdma performance: v dd =28volts, i dqa = 550 ma, v gsb =1.6vdc,p out = 37 watts avg., iq magnitude clipping, channel bandwidth = 3.84 mhz, input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) d (%) output par (db) acpr (dbc) 1880 mhz 16.5 44.8 7.0 --29.8 1900 mhz 16.6 45.3 6.9 --30.1 1920 mhz 16.5 45.8 6.9 --30.6 ? capable of handling 10:1 vswr, @ 32 vdc, 1900 mhz, 150 watts cw output power (3 db input overdrive from rated p out ) ? typical p out @ 3 db compression point ? 160 watts cw 2025 mhz ? typical doherty single--carrier w--cdma performance: v dd =28volts, i dqa = 550 ma, v gsb =1.6vdc,p out = 37 watts avg., iq magnitude clipping, channel bandwidth = 3.84 mhz, input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) d (%) output par (db) acpr (dbc) 2025 mhz 15.3 44.0 6.8 --30.0 features ? production tested in a symmetrical doherty configuration ? 100% par tested for guaranteed output power capability ? characterized with large--signal load--pull parameters and common source s--parameters ? internally matched for ease of use ? integrated esd protection ? greater negative gate--source voltage range for improved class c operation ? designed for digital predistortion error correction systems ? rohs compliant ? ni--780--4 in tape and reel. r3 suffix = 250 units per 56 mm, 13 inch reel. ni--780s--4 in tape and reel. r3 suffix = 250 units per 32 mm, 13 inch reel. table 1. maximum ratings rating symbol value unit drain--source voltage v dss --0.5, +65 vdc gate--source voltage v gs --6.0, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg -- 65 to +150 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/developm ent tools/calculators to access mttf calculators by product. 1880--2025 mhz, 37 w avg., 28 v single w--cdma lateral n--channel rf power mosfets MRF8P20160Hr3 MRF8P20160Hsr3 (top view) rf outa /v dsa 31 figure 1. pin connections 42 rf outb /v dsb rf ina /v gsa rf inb /v gsb case 465h--02, style 1 ni--780s--4 MRF8P20160Hsr3 case 465m--01, style 1 n i -- 7 8 0 -- 4 MRF8P20160Hr3 document number: mrf8p2160h rev. 1, 7/2010 freescale semiconductor technical data ? freescale semiconductor, inc., 2010. a ll rights reserved.
2 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 table 2. thermal characteristics characteristic symbol value (1,2) unit thermal resistance, junction to case case temperature 81 c, 37 w cw, 28 vdc, i dqa = 550 ma, v gsb = 1.3 vdc, 1900 mhz r jc 0.75 c/w table 3. esd protection characteristics test methodology class human body model (per jesd22--a114) 2 (minimum) machine model (per eia/jesd22--a115) a (minimum) charge device model (per jesd22--c101) iv (minimum) table 4. electrical characteristics (t a =25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics (3) zero gate voltage drain leakage current (v ds =65vdc,v gs =0vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds =28vdc,v gs =0vdc) i dss ? ? 1 adc gate--source leakage current (v gs =5vdc,v ds =0vdc) i gss ? ? 1 adc on characteristics (3) gate threshold voltage (v ds =10vdc,i d =116 adc) v gs(th) 1.2 1.8 2.7 vdc gate quiescent voltage (v dd =28vdc,i da = 550 madc, measured in functional test) v gs(q) 1.9 2.7 3.4 vdc drain--source on--voltage (v gs =10vdc,i d =1.5adc) v ds(on) 0.1 0.27 0.5 vdc functional tests (4,5) (in freescale doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc,p out =37wavg., f = 1920 mhz, single--carrier w--cdma , iq magnitude clipping , input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5mhzoffset. power gain g ps 15.5 16.5 18.5 db drain efficiency d 43.5 45.8 ? % output peak--to--average ratio @ 0.01% probability on ccdf par 6.4 6.9 ? db adjacent channel power ratio acpr ? --30.6 --28.5 dbc typical broadband performance (5) (in freescale doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc, p out = 37 w avg., f = 1920 mhz, single--carrier w--cdma , iq magnitude clipping , input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5mhzoffset. frequency g ps (db) d (%) output par (db) acpr (dbc) 1880 mhz 16.5 44.8 7.0 --29.8 1900 mhz 16.6 45.3 6.9 --30.1 1920 mhz 16.5 45.8 6.9 --30.6 1. mttf calculator available at http://www.freescale.com/rf . select software & tools/developm ent tools/calculators to access mttf calculators by product. 2. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes -- an1955. 3. each side of device measured separately. 4. part internally matched both on input and output. 5. measurement made with device in a symmetr ical doherty configuration. (continued)
MRF8P20160Hr3 MRF8P20160Hsr3 3 rf device data freescale semiconductor table 4. electrical characteristics (t a =25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical performance (1) (in freescale doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc, 1880--1920 mhz bandwidth p out @ 1 db compression point, cw p1db ? 107 ? w p out @ 3 db compression point, cw p3db ? 160 ? w imd symmetry @ 40 w pep, p out where imd third order intermodulation ? 30 dbc (delta imd third order intermodulation between upper and lower sidebands > 2 db) imd sym ? 13 ? mhz vbw resonance point (imd third order intermodulation inflection point) vbw res ? 50 ? mhz gain flatness in 40 mhz bandwidth @ p out =37wavg. g f ? 0.2 ? db gain variation over temperature (--30 cto+85 c) ? g ? 0.01 ? db/ c output power variation over temperature (--30 cto+85 c) ? p1db ? 0.009 ? db/ c typical broadband performance ? 2025 mhz (1) (in freescale 2025 doherty test fixture, 50 ohm system) v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc,p out = 37 w avg., f = 2025 mhz, single--carrier w--cdma , iq magnitude clipping , input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5mhzoffset. frequency g ps (db) d (%) output par (db) acpr (dbc) 2025 mhz 15.3 44.0 6.8 -- 3 0 . 0 1. measurement made with device in a sy mmetrical doherty configuration.
4 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 figure 2. MRF8P20160Hr3(hsr3) t est circuit component layout MRF8P20160H rev. 1 c10 v ga c8 r2 c6 c5 c3 c1 c2 c4 r1 z1 v gb c11 c9 r3 c7 c21 c23 v db c25 c19 c17 c13 c15 c14 c12 c16 c26 v da c20 c22 c24 c18 cut out area c p table 5. MRF8P20160Hr3(hsr3) test circ uit component designations and values part description part number manufacturer c1, c2, c12, c13 10 pf chip capacitors atc600f100jt250xt atc c3 0.3 pf chip capacitor atc600f0r3bt250xt atc c4, c5 1.1 pf chip capacitors atc600f1r1bt250xt atc c6, c7, c18, c19 12 pf chip capacitors atc600f120jt250xt atc c8, c9, c20, c21, c22, c23 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c10, c11 22 f, 35 v tantalum capacitors t491x226k035at kemet c14, c15 2.0 pf chip capacitors atc600f2r0bt250xt atc c16, c17 2.2 pf chip capacitors atc600f2r2bt250xt atc c24, c25 220 f, 50 v electrolytic capacitors 227cks505m illinois cap c26 0.8 pf chip capacitor atc600f0r8bt250xt atc r1 50 ? , 4 w chip resistor cw12010t0050gbk atc r2, r3 8.25 ? , 1/4 w chip resistors crcw12068r25fkea vishay z1 1900 mhz band 90 , 3 db chip hybrid coupler gcs351--hyb1900 soshin pcb 0.020 , r =3.5 ro4350b rogers
MRF8P20160Hr3 MRF8P20160Hsr3 5 rf device data freescale semiconductor 4 2 2 4 2 2 single--ended quadrature combined doherty push--pull 4 4 4 4 figure 3. possible circuit topologies
6 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 typical characteristics irl, input return loss (db) 1850 irl g ps acpr f, frequency (mhz) figure 4. output peak--to--average ratio compression (parc) broadband performance @ p out = 37 watts avg. -- 2 2 -- 1 0 -- 1 3 -- 1 6 -- 1 9 13 18 17.5 17 -- 3 3 49 48 47 46 -- 2 8 -- 2 9 -- 3 0 -- 3 1 d , drain efficiency (%) d g ps , power gain (db) 16.5 16 15.5 15 14.5 14 13.5 1875 1900 1925 1950 1975 2000 2025 2050 45 -- 3 2 -- 2 5 parc parc (db) -- 4 . 5 -- 2 . 5 -- 3 -- 3 . 5 -- 4 -- 5 acpr (dbc) figure 5. intermodulation distortion products versus two--tone spacing two--tone spacing (mhz) 10 -- 7 0 -- 2 0 -- 3 0 -- 4 0 -- 6 0 1 100 imd, intermodulatio n distortion (dbc) -- 5 0 im3--u im3--l im7--u figure 6. output peak--to--average ratio compression (parc) versus output power 0 p out , output power (watts) -- 2 -- 4 -- 6 20 -- 1 -- 3 -- 5 output compression at 0.01% probability on ccdf (db) 0 40 60 100 0 60 50 40 30 20 10 d , drain efficiency (%) -- 1 d b = 1 6 w -- 3 d b = 3 6 w 80 d acpr parc acpr (dbc) -- 6 0 0 -- 1 0 -- 2 0 -- 4 0 -- 3 0 -- 5 0 18 g ps , power gain (db) 17 16 15 14 13 12 g ps 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0.01% probab ility on ccdf v dd =28vdc,p out =37w(avg.),i dqa = 550 ma v gsb = 1.6 vdc, single--carrier w--cdma im7--l im5--u im5--l v dd =28vdc,p out = 40 w (pep) i dqa = 550 ma, v gsb = 1.6 vdc, two--tone measurements (f1 + f2)/2 = center frequency of 1900 mhz v dd =28vdc,i dqa = 550 ma v gsb = 1.6 vdc, f = 1900 mhz single--carrier w--cdma, 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0. 01% probab ility on ccdf -- 2 d b = 2 6 w
MRF8P20160Hr3 MRF8P20160Hsr3 7 rf device data freescale semiconductor typical characteristics 1 g ps acpr p out , output power (watts) avg. figure 7. single--carrier w--cdma power gain, drain efficiency and acpr versus output power -- 1 0 -- 2 0 12 18 0 60 50 40 30 20 d , drain efficiency (%) g ps , power gain (db) 17 16 10 300 10 -- 6 0 acpr (dbc) 15 14 13 0 -- 3 0 -- 4 0 -- 5 0 figure 8. broadband frequency response 0 18 1660 f, frequency (mhz) v dd =28vdc p in =0dbm i dqa = 550 ma v gsb =1.6vdc 12 9 6 1720 gain (db) 15 gain 1780 1840 1900 1960 2020 2080 2140 irl -- 4 2 0 -- 7 -- 1 4 -- 2 1 -- 2 8 irl (db) 3--35 1920 mhz v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc single--carrier w--cdma, 3.84 mhz channel bandwidth d input signal par = 9.9 db @ 0.01% probabilit y on ccdf 1880 mhz 1900 mhz 1920 mhz 1900 mhz 1880 mhz 100 w--cdma test signal 10 0.0001 100 0 peak--to--average (db) figure 9. ccdf w--cdma iq magnitude clipping, single--carrier test signal 10 1 0.1 0.01 0.001 2468 probability (%) w--cdma. acpr measured in 3.84 mhz channel bandwidth @ 5mhzoffset. input signal par = 9.9 db @ 0.01% probabilit y on ccdf input signal 12 -- 6 0 --100 10 (db) -- 2 0 -- 3 0 -- 4 0 -- 5 0 -- 7 0 -- 8 0 -- 9 0 3.84 mhz channel bw 7.2 1.8 5.4 3.6 0 -- 1 . 8 -- 3 . 6 -- 5 . 4 -- 9 9 f, frequency (mhz) figure 10. single--carrier w--cdma spectrum -- 7 . 2 --acpr in 3.84 mhz integrated bw +acprin3.84mhz integrated bw -- 1 0 0
8 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 v dd =28vdc,i dqa = 550 ma f mhz max p out (1) z source ? z load ? watts dbm 1880 98 49.9 5.14 -- j9.41 1.56 -- j5.24 1900 98 49.9 7.59 -- j9.88 1.58 -- j5.37 1920 97 49.9 8.90 -- j9.65 1.57 -- j5.48 (1) maximum output power measurement re flects pulsed 1 db gain compression. z source = test circuit impedance as measured from gate contact to ground. z load = test circuit impedance as measured from drain contact to ground. figure 11. maximum output power ? doherty load pull optimization for carrier side z source z load input matching network device under test output matching network v dd =28vdc,i dqa = 550 ma f mhz max eff. (1) % z source ? z load ? 1880 65.1 5.14 -- j9.41 3.04 -- j3.65 1900 64.6 7.59 -- j9.88 4.13 -- j2.87 1920 64.6 8.90 -- j9.65 4.12 -- j3.15 (1) maximum efficiency measurement re flects pulsed 1 db gain compression. z source = test circuit impedance as measured from gate contact to ground. z load = test circuit impedance as measured from drain contact to ground. figure 12. maximum efficiency ? doherty load pull optimization for carrier side z source z load input matching network device under test output matching network
MRF8P20160Hr3 MRF8P20160Hsr3 9 rf device data freescale semiconductor alternative peak tune load pull characteristics 32 p in , input power (dbm) v dd =28vdc, i dqa = 550 ma, pulsed cw, 10 sec(on), 10% duty cycle 52 50 48 33 53 51 45 p out , output power (dbm) note: load pull test fixture tuned for peak p1db output power @ 28 v 49 54 56 31 29 37 28 27 55 47 46 26 ideal actual 30 34 35 36 1880 mhz 1900 mhz 1920 mhz 1920 mhz 1900 mhz 1880 mhz f (mhz) p1db p3db watts dbm watts dbm 1880 103 50.1 122 50.9 1900 104 50.2 120 50.8 1920 104 50.2 118 50.7 test impedances per compression level f (mhz) z source ? z load ? 1880 p1db 5.14 -- j9.41 1.65 -- j5.46 1900 p1db 7.59 -- j9.88 1.67 -- j5.43 1920 p1db 8.90 -- j9.65 1.66 -- j5.50 figure 13. pulsed cw output power versus input power @ 28 v note: measurement made on the class ab, carrier side of the device.
10 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 alternate characterization ? 2025 mhz figure 14. MRF8P20160Hr3(h sr3) test circuit component layout ? 2025 mhz MRF8P20160H rev. 1 c10 v ga r2 cut out area c6 c8 z1 v gb c11 r1 c1 c2 c3 c4 c5 r3 c7 c9 c23 c25 v gb c27 c21 c19* c13 c17 c16 c12 c14 c15 c20 c22 c24 c26 c28 v ga * stacked c18* c p table 6. MRF8P20160Hr3(hsr3) test circuit c omponent designations and values ? 2025 mhz part description part number manufacturer c1, c2, c6, c7, c12, c13, c20, c21 15 pf chip capacitors atc600f150jt250xt atc c3, c14, c15 0.3 pf chip capacitors atc600f0r3bt250xt atc c4, c5 2.4 pf chip capacitors atc600f2r4bt250xt atc c8, c9, c22, c23, c24, c25 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c10, c11 22 f, 35 v tantalum capacitors t491x226k035at kemet c16, c17 0.6 pf chip capacitors atc600f0r6bt250xt atc c18, c19 1.1 pf chip capacitors atc600f1r1bt250xt atc c26, c27 220 f, 50 v electrolytic capacitors 227cks505m illinois cap c28 0.8 pf chip capacitors atc600f0r8bt250xt atc r1 50 ? , 4 w chip resistor cw12010t0050gbk atc r2, r3 8.25 ? , 1/4 w chip resistors crcw12068r25fkea vishay z1 1900 mhz band 90 , 3 db chip hybrid coupler gcs351--hyb1900 soshin pcb 0.020 , r =3.5 ro4350b rogers
MRF8P20160Hr3 MRF8P20160Hsr3 11 rf device data freescale semiconductor typical characteristics ? 2025 mhz d irl, input return loss (db) 1995 irl g ps acpr f, frequency (mhz) figure 15. output peak--to--average ratio compression (parc) broadband performance @ p out = 20 watts avg. -- 1 8 -- 1 6 --16.5 -- 1 7 --17.5 14.7 15.7 15.6 15.5 -- 3 4 44 43 42 41 -- 2 9 -- 3 0 -- 3 1 -- 3 2 d , drain efficiency (%) d g ps , power gain (db) 15.4 15.3 15.2 15.1 15 14.9 14.8 2000 2005 2010 2015 2020 2025 2030 2035 40 -- 3 3 --18.5 parc parc (db) -- 4 . 5 -- 2 . 5 -- 3 -- 3 . 5 -- 4 -- 5 acpr (dbc) 1 g ps acpr p out , output power (watts) avg. figure 16. single--carrier w--cdma power gain, drain efficiency and acpr versus output power -- 1 0 -- 2 0 11 17 0 60 50 40 30 20 d , drain efficiency (%) g ps , power gain (db) 16 15 10 300 10 -- 6 0 acpr (dbc) 14 13 12 0 -- 3 0 -- 4 0 -- 5 0 figure 17. broadband frequency response 0 18 1850 f, frequency (mhz) v dd =28vdc p in =0dbm i dqa = 550 ma v gsb =1.6vdc 12 9 6 1900 gain (db) 15 gain 1950 2000 2050 2100 2150 2200 irl -- 3 0 0 -- 5 -- 1 0 -- 1 5 -- 2 0 irl (db) 3--25 2010 mhz 2025 mhz 2010 mhz 2025 mhz v dd =28vdc,i dqa = 550 ma, v gsb =1.6vdc single--carrier w--cdma, 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0.01% probabilit y on ccdf v dd =28vdc,p out =37w(avg.),i dqa = 550 ma v gsb = 1.6 vdc, single--carrier w--cdma 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0. 01% probab ility on ccdf 100
12 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 package dimensions
MRF8P20160Hr3 MRF8P20160Hsr3 13 rf device data freescale semiconductor
14 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3
MRF8P20160Hr3 MRF8P20160Hsr3 15 rf device data freescale semiconductor
16 rf device data freescale semiconductor MRF8P20160Hr3 MRF8P20160Hsr3 product documentation and software refer to the following documents, tools and software to aid your design process. application notes ? an1955: thermal measurement methodology of rf power amplifiers engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? .s2p file for software, do a part number search at http://www.freescale.c om, and select the ?part num ber? link. go to the software & tools tab on the part?s product summary page to download the respective tool. revision history the following table summarizes revisions to this document. revision date description 0 apr. 2010 ? initial release of data sheet 1 july 2010 ? added part number MRF8P20160Hr3 (ni--780--4), p. 1 ? corrected i dq1a value from 554 to 550 ma in thermal characteristics table and changed thermal resistance value from 0.95 to 0.75 c/w. thermal value now reflects the use of the combined dissipated power from the carrier amplifier and peaking amplifier, p. 2 ? changed v ds(on) values from 0.05 to 0.1 min, 0.11 to 0.27 typ and 0.15 to 0.5 max. revised numbers reflect per side measurement versus pr evious combined measurements, p. 2 ? replaced fig. 4, output peak--to--average ra tio compression (parc) broadband performance @ p out = 37 watts avg. to show a wider bandwidth capability, p. 6 ? replaced fig. 15, output peak--to--average ra tio compression (parc) broadband performance @ p out = 20 watts avg. to show more detailed rf performance capability, p. 11
MRF8P20160Hr3 MRF8P20160Hsr3 17 rf device data freescale semiconductor information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regar ding the suitab ility of its products for any particula r purpose, nor does freescale semiconductor assu me any liability ari sing out of the app lication or use of any product or circuit, and specifically discl aims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems int ended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subs idiaries, affiliate s, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale t and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2010. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33169354848(french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1--8--1, shimo--meguro, meguro--ku, tokyo 153--0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center 1--800--441--2447 or +1--303--675--2140 fax: +1--303--675--2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mrf8p2160h rev. 1, 7/2010


▲Up To Search▲   

 
Price & Availability of MRF8P20160H

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X